SUPPLEMENTARY FIGURES

Figure S1. RNA-CHAMP: A platform for massively parallel measurement of Cas13d **binding.** (A) Left: schematic of the experiment. Middle: microscope field-of-view. Right: quantification of fluorescent Tus (green) binding to TerB-containing DNA clusters (magenta) in a MiSeq chip. The bar graph shows the percentage of clusters with or without *TerB*-encoding sequences that also have a fluorescent Tus signal. Unpaired Student's t-test, ***p < 0.001. (B) Left: schematic of the experiment, Middle: microscope field-of-view. Right: quantification of RNA transcription in a MiSeq chip. The bar graph shows the percentage of clusters that hybridized with an ATTO-647N labeled complementary oligo (green) to promoter containing clusters (magenta) and clusters without a T7 promoter. Unpaired Student's t-test, ***p < 0.001. (C) Purification of ATTO-488 labeled SNAP-dCas13d. Fractions were collected from an S200 gel filtration column and resolved on an SDS-PAGE gel. Top: gel visualized by Coomassie blue staining. Bottom: fluorescent image before Coomassie blue staining. Triangle: ATTO-488 labeled SNAP-dCas13d; *: minor truncation product. (D) Purification of ATTO-488 labeled dCas13d conjugated with a CRISPR RNA (crRNA). Purified dCas13d was incubated with various amounts of crRNA. The crRNA:dCas13d binary complex was separated from apoCas13d via size exclusion chromatography and analyzed in a native tris-glycine gel followed by Coomassie blue staining. (E) BLI results of SNAP-dCas13d and non-tagged dCas13d. The SNAP-tag does not affect Cas13d's binding affinity to RNA.

Figure S2. Biolayer interferometry (BLI) of a subset of the target RNA library. (A) Schematic of the BLI assay. Biotinylated target RNA is immobilized on a streptavidinfunctionalized BLI tip. Separate tips are used for each target RNA. Tips are dipped into a solution containing dCas13d RNPs to monitor the association rate, k_a . Dissociation, k_d , is monitored by transferring the tip to a buffer solution without any free RNP. For each target sequence, all measurements were repeated with 100 nM, 50 nM, and 25 nM dCas13d. BLI results for (B) partially matched and (C) PFS sequences. RNA-loaded biosensors were immersed in dCas13d solutions for 600 sec (dashed vertical line). Biosensors were then immersed in the binding buffer for k_d measurements. Black lines are a global simultaneous fit to three concentrations. Gray lines are raw BLI curves. Fit results are summarized in Table S1.

(A) Normalized ΔABAs of Cas13d binding to a PFS library with a second target RNA (left: 5' PFS; right: 3' PFS). Blue and red boxes indicate two targets that are highlighted in the next panel. These sequences have a matched target RNA but significant changes in binding affinities.
(B) The ViennaRNA-predicted secondary structures of 5'PFS-CCU (red box) and 5'PFS-AUC (blue box). Light blue indicates the target RNA sequence. (C) Normalized ΔABA of PFS

sequences grouped by their intramolecular base pairing counts in the target region. Left: intramolecular base pairing counts in positions 12-22; right: positions 1-11 of the target RNA. Error bars are the standard deviation of normalized Δ ABA. Statistical analysis was performed using unpaired Student's t-test, ***p < 0.001. (**D**) Sequence logo of the 25% highest affinity PFS sequences across two target RNA libraries from **Figures 2A & S3A**. (**E**) Scatter plot of the average number of intramolecular base pairs and normalized Δ ABA for target #1. Left: distal positions 12-22 (Pearson's r = -0.25, p-value < 0.0001). Right: proximal positions 1-11 (Pearson's r = 0.0067, p-value = 0.80). (**F**) Scatter plot of the average number of intramolecular base pairing and normalized Δ ABA for target #2. Left: distal positions 12-22 (Pearson's r = -0.35, p-value < 0.0001). Right: proximal positions 12-22 (Pearson's r = -0.35, p-value < 0.0001). Right: proximal positions 12-22 (Pearson's r = -0.25).

 $U_{22} U_{21} U_{20} G_{19} A_{18} U_{17} C_{16} U_{15} G_{14} A_{13} A_{12} A_{11} U_{10} A_9 U_8 U_7 C_6 A_5 G_4 G_3 U_2 C_1$ Figure S4. Mismatch analysis of a second target RNA library.

(A) Summary of single mismatch-dependent changes in the \triangle ABA for the second target RNA. The solid black line is the average of all possible substitutions at each position. The upper dashed line is the matched target \triangle ABA and the lower dashed line is the RNA-CHAMP detection limit. (B) The normalized \triangle ABA for all double substitutions (normalized to the matched target). Inset: blowup of all mismatches at target positions U₂ & G₄. N.D. (not determined) refers to sequences that bound Cas13d with a lower affinity than our detection limit. (C) Substitutions that increase intramolecular base pairing drastically increased the Δ ABA. Top: predicted matched target RNA structure. Bottom: predicted U2A, G4U structure. Despite two mismatches, this partially matched target binds Cas13d better than the matched target due to relaxed intramolecular base pairing.

Figure S5. Insertion and deletion analysis for the first target.

(A) Changes in the \triangle ABA for all possible insertion (top) and deletion (bottom). For insertions, the line is an average of the four possible insertions at each position. The upper dashed line is the matched target \triangle ABA and the lower dashed line is the RNA-CHAMP detection limit. (B) Predicted structures of two insertions at position 19 that relax (19C, top) or further basepair (19G, bottom) with the target RNA. These changes have a drastic impact on the \triangle ABA. (C) Top triangle plot: double deletion analysis. Bottom triangle plot: double insertion analysis.

Figure S6. Insertion and deletion analysis for a second target.

(A) Changes in the \triangle ABA for all possible insertion (top) and deletion (bottom). For insertions, the line is an average of the four possible insertions at each position. The upper dashed line is the matched target \triangle ABA and the lower dashed line is the RNA-CHAMP detection limit. (B) Predicted structure of two insertions at position 3 that relax (3C, top) or further basepair (3U, bottom) with the target RNA. (C) Top triangle plot: double deletion analysis. Bottom triangle plot: double insertion analysis.

Matched target: CCATAGAGAGGGTTATCCGCTCA Encoding sequence: CUATAGAGAGGTTATCCGGTCA

Position 4 substitution-G, Position 21 sustitution-U

Position	Substitution A	Substitution U	Substitution G	Substitution C	Insertion A	Insertion U	Insertion G	Insertion C	Deletion
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0
:									
21	0	1	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0

В

Encoding sequence: CUGTAGAGAGGTTATCCGCTCA

Figure S7. Cas13d modeling and machine learning model.

(A) Each position along the target has eight possible alterations including substitutions, insertions, and deletions. For example, position four, which is a cytosine in the matched target, can be substituted for A, U, or G (C4A, C4U, or C4G), can have one of four insertions (A, U, G, C), or can be deleted. (B) Target RNA accessibility is encoded as the number of intramolecularly base paired nucleotides, as illustrated. RNA structure is predicted by the ViennaRNA package.

(C) We trained half of our dataset on a convolutional neural network (CNN) and tested the rest of the dataset with a training alteration of 1,000 (epoch). In this machine learning model, there are 37,089 total trained parameters. Pearson's r = 0.77.

Figure S8. Binding and cleavage sensitivity of Cas13d for CRISPR diagnostics. (A) Relative DNA binding affinities for nuclease-dead RfxCas13d, as measured by biolayer interferometry (BLI). Target RNA sequences harbor the indicated single mismatches relative to the matched target RNA. Binding affinities are normalized to the matched target. Error bars: S.D. of three replicates. Blue: proximal mismatches; red: distal mismatches. (B) Correlation of Δ ABAs of dEsCas13d and dRfxCas13d. Pearson r = 0.93, p-value < 0.001. (C) Cleavage rates for the indicated mismatched targets, defined as the slope of the first 20 minutes of the fluorescent reporter assay (see Methods). (D) Correlation of binding affinity and cleavage rates for RfxCas13. Pearson r = 0.95 (p-value < 0.05). (E) BLI curves of crRNA-1 and crRNA-2 with MT and D950N target RNAs. Colored lines are a global fit to three concentrations. Gray lines: measured BLI binding curves. (F) The apparent binding affinity is computed from a global fit to the data. (G) A single C \rightarrow A substitution differentiates the Wuhan and Delta strains (circled). Notably, this substitution is not predicted to change the target RNA

sequences. (I) Initial slope of the fluorescent signals in (H), computed up to the 20-min time point.

Supplemental Tables

Sequences	<i>K</i> _d (M)	K _d Error	$k_a (\mathrm{M}^{-1}\mathrm{S}^{-1})$	ka Error	<i>k</i> _d (S ⁻¹)	<i>k</i> d Error	Numbers of
							sequences for RNA-
							CHAMP in Fig 1G
MT	3.1E-09	1.8E-11	1.7E+05	6.4E+02	5.2E-04	2.5E-06	26270
C2G	2.0E-09	1.6E-11	2.0E+05	8.1E+02	4.0E-04	2.6E-06	58
C4A	1.6E-09	1.0E-11	2.2E+05	6.6E+02	3.5E-04	1.9E-06	77
G5U	9.3E-09	1.2E-10	4.5E+04	3.5E+02	4.2E-04	4.1E-06	73
C7A	2.1E-09	1.3E-11	2.2E+05	7.9E+02	4.5E-04	2.3E-06	72
U10G	3.8E-09	2.9E-11	1.3E+05	6.3E+02	5.1E-04	3.1E-06	85
G15A	3.4E-09	1.9E-11	1.8E+05	6.4E+02	6.0E-04	2.4E-06	93
A18G	8.7E-09	4.8E-11	7.3E+04	2.8E+02	6.3E-04	2.5E-06	89
A20C	6.3E-09	3.4E-11	10.0E+04	3.7E+02	6.3E-04	2.5E-06	85
C22A	3.6E-09	2.0E-11	1.9E+05	7.2E+02	6.6E-04	2.6E-06	77
5'-UAA	6.0E-09	5.4E-11	1.0E+05	6.2E+02	6.1E-04	4.0E-06	33
3'-GCU	4.2E-09	2.0E-11	1.7E+05	5.9E+02	7.2E-04	2.3E-06	46
3'-GGU	7.1E-09	5.8E-11	1.2E+05	7.3E+02	8.4E-04	4.3E-06	98
3'-UAA	6.0E-09	5.4E-11	1.0E+05	6.2E+02	6.1E-04	4.0E-06	22
3'-UGG	8.6E-09	1.1E-10	7.0E+04	6.0E+02	6.0E-04	5.4E-06	92
3'-GUU	4.4E-09	3.5E-11	2.5E+05	1.6E+03	1.1E-03	4.7E-06	99
crRNA-1 (MT)	4.0E-09	3.8E-11	9.6E+04	4.7E+02	3.8E-04	3.1E-06	
crRNA-1	1.5E-08	1.1E-10	2.7E+04	1.5E+02	4.1E-04	2.2E-06	
(D950N)							
crRNA-2 (MT)	3.0E-09	3.8E-11	5.9E+04	2.3E+02	1.8E-04	2.2E-06	
crRNA-2							
(D950N)	2.9E-09	3.8E-11	8.7E+04	4.3E+02	2.5E-04	3.0E-06	

Table S1. Biolayer interferometry and RNA cleavage rates for select RNAs

Sequences	Normalized slope	S.D.	
MT	1	N/A	
C22A	0.57	0.048	
A20C	0.69	0.082	
A18G	0.54	0.078	
G15A	0.71	0.030	
U11A	0.71	0.017	
U10A	0.17	0.028	
U10G	0.37	0.0059	
A9U	0.48	0.028	
U8A	0.19	0.020	
C7A	0.15	0.021	
C7G	0.38	0.0087	
C6G	0.077	0.013	
G5U	0.040	0.0080	
G5C	-0.055	0.085	
C4A	0.027	0.00095	
C4G	0.12	0.030	
U3A	-0.013	0.0050	
C2G	0.026	0.0053	
A1U	-0.020	0.046	
Sequences	Slope (AU/min)	S.D.	
crRNA-1 (MT)	20000	5800	
crRNA-1 (D950N)	3200	1100	
crRNA-2 (MT)	23000	820	
crRNA-2 (D950N)	4700	550	

 Table S2. Slope of fluorescent cleavage assay for selected RNAs

Name	Туре	Description	Sequence (5'-3')
Library extension	Oligo	Extend library oligo with	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
primer- Forward		Illumina adapters	CGACGCTCTTCCGATCT
(JK044)			
Library extension	Oligo	Extend library oligo with	CAAGCAGAAGACGGCATACGAGATGAACAACATGACGTG
primer- Reverse		Illumina adapters	ACTTTAGTTACAACATACTAATTGTGACTGGAGTTCAGACG
(JK045)			TGTGCTCTTCCGATCT
Target 1	Oligo pool	6N PFS oligo library	CCTACACGACGCTCTTCCGATCTTAATACGACTCACTATAG
			GGAATGGATCCACATCTACGAATTCNNNCCATAGAGAGGT
			TATCCGCTCANNNAGATCGGAAGAGCACACGTCTGAAC
Target 2	Oligo pool	6N PFS oligo library	CCTACACGACGCTCTTCCGATCTTAATACGACTCACTATAG
			GGAATGGATCCACATCTACGAATTCNNNGTTGTTCTCCGTC
			TATAAATACNNNAGATCGGAAGAGCACACGTCTGAAC
t7_promoter_scra	Oligo	T7 promoter scramble oligo	CCTACACGACGCTCTTCCGATCTACGGTAGATCTAAAGTCA
mble			CTAATGGATCCACATCTACGAATTCNNNTTTGATCTGAAAT
			ATTCAGGTCNNNAGATCGGAAGAGCACACGTCTGAAC
Non-target	Oligo	Non-target oligo as a negative	CCTACACGACGCTCTTCCGATCTTAATACGACTCACTATAG
negative control		control	GGAATGGATCCACATCTACGAATTCGTTAGCTAGAAGGGG
			AAGTTGGTTATGGAGATCGGAAGAGCACACGTCTGAAC
P7 regeneration	Oligo	Regenerate all clusters into	CAAGCAGAAGACGGCATACGAGAT
primer (IF363)		dsDNA on the chip	
PhiX labeling	5'-Digoxigenin	Regenerate PhiX clusters on	/5DigN/CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC
primer (IF443)	labeled Oligo	the chip	
T7	Oligo	Universal forward oligo for	TAATACGACTCACTATAGGG
promoter_Forward		IVT template	
A1U_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGAGAGCGGATAACCTCTCTATGGTACGAACCC
			TATAGTGAGTCGTATTA
U3A_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGTGCGGATAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
C4G_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGACCGGATAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
G5C_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGGGGATAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
C6G_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCCGATAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
C7G_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCGCATAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
U8A_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCGGTTAACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA
A9U_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCGGAAAACCTCTCTATGGTACGAACCC
			TATAGTGAGTCGTATTA
U10A_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCGGATTACCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA

Table S3. DNA oligonucleotides used in this study

U11A_Reverse	Oligo	Reverse oligo for IVT template	CGATCTCGGTGAGCGGATATCCTCTCTATGGTACGAACCCT
			ATAGTGAGTCGTATTA

Name	Туре	Description	Sequence (5'-3')
crRNA_	crRNA	PFS analysis and	CACCCGUGCAAAAAUGCAGGGGUCUAAAACUGAGCGGAUA
Target 1		mismatch analysis	ACCUCUCUAUGG
crRNA_	crRNA	PFS analysis	CACCCGUGCAAAAUUGCAGGGGUCUAAAACCUUCUCCAAA
Target 2			UUGUUUCAUCCU
crRNA_	crRNA	Mismatch analysis	CACCCGUGCAAAAUUGCAGGGGUCUAAAACGACCUGAAUA
Target 3			UUUCAGAUCAAA
crRNA_Target 1	crRNA	BLI and fluorescent	AACCCCUACCAACUGGUCGGGGUUUGAAACUGAGCGGAUA
(RfxCas13d)		cleavage assay	ACCUCUCUAUGG
crRNA-1	crRNA	SNP detection	CACCCGUGCAAAAUUGCAGGGGUCUAAAACUUUUGGUUGA
		(Fig 5)	CCACAUCUUGAA
crRNA-2	crRNA	SNP detection	CACCCGUGCAAAAUUGCAGGGGUCUAAAACCUUGAAGUUU
		(Fig 5)	UCCAAGUGCACU
crRNA-1	crRNA	SNP detection	CACCCGUGCAAAAUUGCAGGGGUCUAAAACUUUUGGUUGA
(Delta)		(Fig. S8H)	CCACAUUUUGAA
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
MT	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUG
	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
C2G		cleavage assay	
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGAUC
C4A	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCUCUC
G5U	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUACGCUC
C7A	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAGAGGUGAUCCGCUC
U10G	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUAGAAAGGUUAUCCGCUC
G15A	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCAUGGAGAGGUUAUCCGCUC
A18G	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUACCCUAGAGAGGUUAUCCGCUC
A20C	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI and fluorescent	CCACAUCUACGAAUUCGUAACAUAGAGAGGUUAUCCGCUC
C22A	ssRNA	cleavage assay	ACCGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI	CCACAUCUACGAAUUCUAACCAUAGAGAGGUUAUCCGCUC
5'-UAA	ssRNA		ACCGAGAUCGGAAGAGCACA/3Bio/

 Table S4. RNA oligonucleotides used in this study

	3' biotinylated	BLI	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
3'-GCU	ssRNA		AGCUAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
3'-GGU	ssRNA		AGGUAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
3'-UAA	ssRNA		AUAAAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
3'-UGG	ssRNA		AUGGAGAUCGGAAGAGCACA/3Bio/
	3' biotinylated	BLI	CCACAUCUACGAAUUCGUACCAUAGAGAGGUUAUCCGCUC
3'-GUU	ssRNA		AGUUAGAUCGGAAGAGCACA/3Bio/
crRNA-1 target	ssRNA	Fluorescent	UUGGAAAACUUCAAGAUGUGGUCAACCAAAAUGCACAAGC
(MT)		cleavage assay	
crRNA-1 target	ssRNA	Fluorescent	UUGGAAAACUUCAAAAUGUGGUCAACCAAAAUGCACAAGC
(D950N)		cleavage assay	
crRNA-2 target	ssRNA	Fluorescent	UCCACAGCAAGUGCACUUGGAAAACUUCAAGAUGUGGUCA
(MT)		cleavage assay	
crRNA-2 target	ssRNA	Fluorescent	UCCACAGCAAGUGCACUUGGAAAACUUCAAAAUGUGGUCA
(D950N)		cleavage assay	
crRNA-1 target	3' biotinylated	BLI	UUGGAAAACUUCAAGAUGUGGUCAACCAAAAUGCACAAGC/
(MT)	ssRNA		3Bio/
crRNA-1 target	3' biotinylated	BLI	UUGGAAAACUUCAAAAUGUGGUCAACCAAAAUGCACAAGC/
(D950N)	ssRNA		3Bio/
crRNA-2 target	3' biotinylated	BLI	UCCACAGCAAGUGCACUUGGAAAACUUCAAGAUGUGGUCA/
(MT)	ssRNA		3Bio/
crRNA-2 target	3' biotinylated	BLI	UCCACAGCAAGUGCACUUGGAAAACUUCAAAAUGUGGUCA/
(D950N)	ssRNA		3Bio/
	5' Fluorescein,	Fluorescent reporter	6-FAM-UUUUU-Iowa Black FQ
	3' quencher	for the cleavage	
Poly-U reporter	ssRNA	assay	